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ABSTRACT

Over the years, many studies have been conducted to measure, analyze, and characterize 
the lightning electric field waveform for a better conception of the lightning phenomenon. 
Moreover, the characterization mainly on the negative return strokes also significantly 
contributed to the development of the lightning detection system. Those studies mostly 
performed the characterization using a conventional method based on manual observations. 
Nevertheless, this method could compromise the accuracy of data analysis due to human 
error. Moreover, a longer processing time would be required to analyze data, especially for 
larger sample sizes. Hence, this study proposed the development of an automated negative 
lightning return strokes characterization using a brute-force search algorithm. A total 

of 170 lightning electric field waveforms 
were characterized automatically using 
the proposed algorithm. The manual and 
automated data were compared by evaluating 
their percentage difference, arithmetic mean 
(AM), and standard deviation (SD). The 
statistical analysis showed a good agreement 
between the manual and automated data 
with a percentage difference of 1.19% 
to 4.82%. The results showed that the 
proposed algorithm could provide an 
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efficient structure and procedure by reducing the processing time and minimizing human 
error. Non-uniformity among users during negative lightning return strokes characterization 
can also be eliminated. 

Keywords: Brute-force search algorithm, electric field, lightning, negative return stroke 

INTRODUCTION

In the lightning phenomenon, the overall effect of lightning is called a flash, in which the 
lightning flash consists of several strokes. The lightning strike can be defined as a lightning 
flash where the lightning-generated electric fields in the thundercloud are typically 100–200 
kW/m and can be as high as 400 kV/m. The mechanism of ground flash involves many 
physical processes such as preliminary breakdown, stepped leaders, connecting leaders, 
return strokes, and subsequent return strokes (Cooray, 2014). The most common downward 
ground flash is a negative ground flash initiated by a lower negative charge region from 
the thundercloud to the ground. The preliminary breakdown process refers to initiating an 
electrical breakdown inside the thundercloud, which consists of multitudes of discharges 
that lead to the development of a leader that propagates in a stepped structure towards the 
ground (Dwyer & Uman, 2014).    

Meanwhile, the return stroke is a luminosity event that travels upward one-third of 
the speed of light in free space, approximately 1x108 m/s (Idone & Orville, 1982). This 
event happens when the connection between the stepped leader and ground has been 
made, and a wave of near-ground potential travels along the leader channel toward the 
cloud (Cooray, 2015). This cloud-to-ground lightning flash typically lasts for 0.5 seconds, 
usually composed of several intermittent discharges called strokes having a duration of 
milliseconds each (Rakov, 2016). The sudden flow of electric charge out of the channel 
and into the striking point will generate a large current, which the average peak of current 
can be as high as 30 kA with each of the strikes could initiate 80 kA or more. As a return 
stroke rises, heat will be generated where the temperature of the air in the discharge channel 
can reach 30,000 K in a few microseconds (Orville, 1968). This temperature is six times 
higher than the Sun’s surface, approximately 5,778 K.

Generally, previous studies widely used a parallel-plate antenna to conduct lightning 
measurement, mainly on the electric field measurement (Cooray & Lundquist, 1982; 
Gomes et al., 1998; Sharma et al., 2005; Cooray & Lundquist, 1985; Ibrahim et al., 2011; 
Hamzah, 2015). Based on the measurement setup, the lightning electric field events were 
recorded using a specific transient recorder system, for example, Tektronix, PiscoScope, 
Yokogawa, or any other data logger system. All the recorded waveforms were commonly 
used for characterization and further analysis based on the manual observations. From 
these observations, it was important to classify the electric field change of the recorded 
waveform by identifying the sign convention. A positive signal which occurred when there 



985Pertanika J. Sci. & Technol. 30 (2): 983 - 1001 (2022)

Automated Negative Lightning Return Strokes Characterization

was an upward curve from the recorded waveform, corresponded to the negative charges 
being lowered to the ground and vice versa, according to the atmospheric sign convention 
(Cooray, 2003; Gomes et al., 2013; Haddad et al., 2012; Nag & Rakov, 2014). Therefore, a 
positive electric field change in a waveform indicated negative return strokes. Further, the 
atmospheric sign convention was applied in most previous studies compared to the physics 
sign convention, which contradicts the atmospheric sign convention (Beasley, 1985). 

Based on the reviewed studies, it was found that the characterization and analysis 
made mainly on the negative return strokes were performed mostly by adopting manual 
observation on every frame of the recorded waveform/data (Ahmad et al., 2010; Hazmi 
et al., 2017; Heidler & Hopf, 1998; Hojo et al., 1985; Ishii & Hojo, 1989; Master et al., 
1984; Santamaría et al., 2006; Weidman & Krider, 1978; Wooi et al., 2016). In contrast, an 
automated negative lightning return strokes characterization using the brute-force search 
algorithm, including its concept details and operation, is proposed in this study. The brute 
force search algorithm is one of the basic local search methods in computer science. This 
algorithm has been applied in this study because of the working principle that will visit 
each waveform point without pruning any point. In contrast with the minimax algorithm, 
it will cut certain points of the searching tree. The minimax depends on the available score, 
making not all waveform points visited by the algorithm. Meanwhile, the hill-climbing 
search algorithm can drive to state which it is commonly get stuck by local optimum. In 
this case, the algorithm has the potential to go back to the original point without searching 
for a new point (Sudin, 2019). Hence, seven negative return stroke parameters were 
characterized using the brute-force search algorithm. In addition, the manually characterized 
data and the automated data from the proposed algorithm were also compared and analyzed. 
The remainder of this paper is structured as follows: Section 2 presents the approach by 
describing the data characterization and processing framework; Section 3 discusses the 
results, and Section 4 concludes the study results.

METHODS

Automated Negative Lightning Return Strokes Characterization

Figure 1 illustrates the steps involved in the proposed automated negative lightning 
return strokes characterization developed in this study. First, the raw data of the measured 
waveform/signal were fetched from the transient recorder system. The transient recorder 
systems used in this study were Picoscope Series 4000. The PicoScope 4000 series is 
usually supplied with the PicoScope software, which can be installed on a personal 
computer (PC) with operating system requirement of Windows XP SP2 or Vista (32- bit 
versions), convenient for the large display, storage, user interface, and networking built in 
the particular PC. This 12-bit oscilloscope is composed of BNC (Bayonet Neill–Concelman) 
type connectors whose inputs have an impedance of 1 MΩ that is compatible with all 
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standard scope probes, including x1, x10, and switched types. In addition, the rear panel 
is composed of a USB 2.0 port connected to the PC, which offered a highly portable 
oscilloscope since there was no requirement of an external power supply as power was 
supplied from the USB port. A full spectrum of the raw data was then plotted to find its 
peak amplitude. If the peak amplitude was observed in positive value (+ve), the signal was 
recognized as negative return strokes. 

In contrast, if the peak amplitude was identified in negative value (-ve), the signal was 
classified as positive return strokes. The proposed algorithm did not process the positive 
return strokes at the next stage (to find the other parameters such as zero-to-peak rise time, 
zero-crossing time, and fast transition time), as shown in Figure 2. Therefore, for this case, 
the proposed algorithm will classify the positive return strokes as others because this study 
only focused on the negative return strokes. It is because positive lightning is less common 

Figure 1. Flow chart of the proposed automated 
negative lightning return strokes characterization

Figure 2. Flow chart of the proposed brute-force 
search algorithm
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than negative lightning, which the measured data of the positive return stroke is much lower 
than the negative return stroke. The measured data in this study is also agreeable with the 
previous research conducted in a tropical region, in which the negative return stroke was the 
region’s most prevalent lightning compared to the positive return stroke (Chi et al., 2014). 

At the next stage, all the parameters of the negative return strokes characterized by 
the brute-force search algorithm were plotted using MATLAB software (version 2018b 
(9.5.0.94444). Each of the values obtained from this algorithm was then compared with 
the range of negative return stroke parameters defined from the previous study conducted 
at Universiti Putra Malaysia, corresponding to tropical climate variation (Arshad, 2017). 
The data were then displayed via a Graphic User Interface (GUI) as negative return strokes 
for parameters within range. Additionally, all the raw data synthesized from the proposed 
algorithm were stored in excel file format (*.xlsx).

Brute-Force Search Algorithm

The brute-force algorithm is an exhaustive search algorithm that previous studies have 
adopted for characterization and classification (Cikač et al., 2020; Davidrajuh & Rong, 
2019; Klaver et al., 2018; Raafat & Naji, 2018; Sudin, 2019; Thike et al., 2017). This 
algorithm provides an effective method to determine an optimal solution by identifying 
all the possible combinations, and each combination is examined one after another (Chum 
et al., 2014; Robinson & Quinn, 2018). Figure 2 illustrates the flow chart of the proposed 
brute-force search algorithm. In this study, the proposed brute-force search algorithm was 
operated by applying several search concepts such as comparative, time reversal, and time 
forward. The proposed algorithm also worked based on the criteria defined by this study. 
Specifically, the criteria for each parameter of negative return strokes were defined and 
interpreted based on the mathematical equations highlighted next. Seven parameters of 
negative return strokes were involved in this study: (1) zero-to-peak rise rime; (2) 10-to-90% 
rise time; (3) zero-crossing time; (4) slow front time; (5) slow front amplitude relative to 
peak; (6) fast transition 10-to-90% rise time, and (7) width dE/dt pulse at half peak (Wooi 
et al., 2016; Arshad, 2017). Figure 3 presents the parameters of negative return strokes. 

Figure 3. Parameters of negative return strokes
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As shown by the flow chart in Figure 2, 
the first step was identifying the time at the 
peak amplitude, referred to as tp. Through 
the proposed algorithm, tp was determined 
using a comparative concept where the value 
of each raw data was compared to find a 
maximum value of amplitude. In this study, an 
is the amplitude value at point zero, while an+1 
is the amplitude value at any point other than 
zero. When the value of point an is less than 
an+1, the peak (P) is equal to an+1, which was 
how the comparative concept worked. After 
that, the looping process continued until the 
value of an was greater than an+1. Eventually, 
the highest amplitude value (an) became the 
peak value (P). Figure 4 shows a flowchart 
of the simplified pseudocode.

The zero-to-peak rise time (tz1p) was 
defined based on Equation 1:

              (1)
Figure 4. Flow chart of the simplified pseudocode 
for peak amplitude

where tp is the time at the peak magnitude, and tz1 is at the first zero-crossing. The value for 
tz1p was obtained by subtracting tp with tz1. It was also determined using the time-reversal 
concept, which can be seen from the flow chart in Figure 2. Based on this concept, the 
time was reversed from a starting point which was from the tp, where the amplitude on 
each time was observed. This process was continued until the time where the amplitude 
was equal to zero was found, which corresponded to tz1. 

Meanwhile, the zero-crossing time (tz) was defined using Equation 2:

       (2)

where tz2 is the time at the second zero-crossing, and tz1 is first. The zero-crossing time 
can be defined as the first at the rising time (tz1) and the second at fall time (tz2). The time’s 
starting point determined the first and second zero-crossings times at the peak amplitude 
(tp). A time forward concept was implemented to find the second zero-crossing time (𝑡z2) for 
this parameter. By taking a starting point of time at the peak amplitude (𝑡p), the proposed 
algorithm searched and moved forward until it detected the time where the amplitude was 
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equal to zero, referred to as tz2. Meanwhile, the first zero-crossing time (𝑡z1) was identified 
in the previous step using the time-reversal concept.

Next, the 10-to-90% rise time was defined based on Equation 3:

      (3)

where tr90 is the time at 90% of the zero-to-peak amplitude, and tr10 is at 10% of the zero-
to-peak amplitude. The value for tr10-90 was obtained by subtracting tr90 with tr10.

Furthermore, the 10% and 90% of zero-to-peak amplitudes were constructed by using 
Equations 4 and 5:

  (4)

  (5)

where P is the waveform peak amplitude, the time at 10% of the zero-to-peak amplitude 
(tr10) was determined by identifying the time at which the amplitude approached 10% of 
the zero-to-peak amplitude. In contrast, the time at 90% of the zero-to-peak amplitude (tr90) 
was determined when the time reached 90% of the zero-to-peak amplitude.

The slow front duration was determined based on the gradient changes from the zero-
to-peak amplitude. In this study, the slow front’s gradient angle was set to equal and less 
than 45o. The gradient (m) and angle (θ) were constructed using Equations 6 and 7:

     (6)

       (7)

where y is the waveform amplitude (E), and x is the time (t). The algorithm worked based on 
the criteria defined from Equation 7. In this process, the algorithm searched and compared 
at least ten points from the vertical and horizontal axis to find the gradient (𝑚) as well as 
the angle (𝜃), starting from the first zero-crossing until the zero-to-peak (rise time region). 
The slow front time (𝑡sf) was obtained when 𝜃 was observed greater than 45o based on the 
intersection point of the plotted gradients, as depicted in Figure 5. In this case, the 450 is 
the turning point between the maximum time of the slow front occurrence and the fast 
transition occurrence. Hence, the tsf can be determined based on the difference between 
the maximum time of the slow front occurrence with the first zero-crossing time. Based on 
the previous study, the ‘break point’ or ‘turning point’ between the slow front and the fast 
transition has been identified from the naked eye on the recorded electric field waveform. 
However, no standard guideline (in terms of angle’s value) has been highlighted to identify 
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the turning point (Willet & Krider, 2000; Hamzah, 2015; Wooi et al., 2016; Arshad, 2017). 
Hence, this study proposed the turning point between the slow front and fast transition at an 
angle of 45o. When the angle is greater than 45o, the waveform becomes quite steep, which 
is uncommon for a slow front occurs at that particular angle from the manual observation.

The slow front amplitude relative to peak value is given by Equation 8:

  (8)

where Psf is the slow front amplitude and is P the waveform peak amplitude, the slow front 
amplitude relative to peak value was determined based on the ratio between Psf with P. 
In this part, after the maximum time of the slow front occurrence (tsf) has been obtained, 
the amplitude can be determined from the y-axis (E). Hence, the value of the y-axis at the 
maximum time of the slow front occurrence can be represented as the slow front amplitude 
(Psf), as shown in Figure 5.

The fast transition occurs between peak amplitude (tp) and the slow front (tsf) time. 
Hence, the fast transition 10-to-90% rise time was defined using the following Equation 9:

      (9)

Where tf90 is the time at 90% of the fast transition amplitude, and tf10 is at 10% of the fast 
transition amplitude, as shown in Figure 6. In this part, the fast transition amplitudes are 
identified by subtracting the peak amplitude (P) with the slow front amplitude (Psf). Since 
the fast transition occurs after the slow front region, the fast transition amplitude was taken 

Figure 5. Slow front time Figure 6. Fast transition 10-90% rise time
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from the starting point at Psf. Therefore, 90% and 10% of the fast transition amplitude 
criteria were constructed using Equations 10 and 11, respectively.

 (10)

 (11)

The half peak amplitude (HPA) and the width of dE/dt pulse at half peak value (thp) 
were defined using given Equations 12 and 13:

       (12)

       (13)

where p is the waveform peak amplitude, tf is the fall time at HPA, and tr is the rise time 
at HPA. As shown by Equation 12, the HPA was obtained by dividing the peak amplitude 
in half. Meanwhile, tr was identified using a reversal time concept, where the time was 
reversed until the time at HPA was detected, referred to as tr. In contrast, thp was calculated 
by subtracting tf with tr. Apart from that, tf was determined using a time forward concept, 
where the time moved forward from a starting point from the peak amplitude (tp). This 
process was continued until the time at HPA was found, which corresponded to tf.

Evaluation of Performance

The percentage difference between manual and automated data was calculated to compare 
automated performance across a different range of data involved by observing how close the 
automated data was to the manual data. The percentage difference is given from Equation 
14 (Hyndman & Koehler, 2006);

 (14)

RESULTS AND DISCUSSIONS

In this study, 170 electric field waveforms were characterized by using the proposed 
algorithm. Table 1 shows the compared data between manual and automated for each 
parameter of the negative return strokes. The automated data were characterized 
automatically from the proposed algorithm. Meanwhile, the manual data were identified 
based on manual observation from the scope. The comparison was also analyzed using 
Bland-Altman plots that provided an effective method to validate the two different data 
measurements (Miller & Ranum, 2011).
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Table 1
Summary of data comparison between manual and automated for negative return strokes

Parameters
Manual Automated Percentage 

Difference (%)AM SD AM SD
Zero-to-Peak Rise Time (µs) 6.7 2.57 6.62 2.53 1.19
10-to-90% Rise Time (µs) 4.51 1.25 4.31 1.36 4.43
Zero-Crossing Time (µs) 33.79 12.77 32.63 12.65 3.43
Slow Front Time (µs) 4.36 2.08 4.15 1.88 4.82
Slow Front Amplitude Relative to Peak (%) 28.8 8.46 28.27 8.35 1.84
Fast Transition 10-to-90% Rise Time (µs) 3.95 1.71 3.88 1.68 1.77
Width dE/dt Pulse at Half Peak (µs) 3.57 1.23 3.51 1.17 1.68

Note. AM: Arithmetic mean; SD: Standard deviation

A significant difference can be seen from Table 1 between the manual and automated 
data for the zero-to-peak rise time, in which the percentage difference was 1.19%. It is 
because the manual data were data based on manual observation. In contrast, the automated 
data were data characterized based on the criteria defined from Equation 1, in which 
the brute-force search algorithm employed a time-reversal concept. Based on Table 1, 
the comparison with the manual data revealed that the AM (6.62) and SD (2.53) of the 
automated data were slightly lower, particularly 1.19% and 1.56%, respectively. Apart from 
that, the Bland-Altman plot from Figure 7 presents the mean difference between the manual 
and automated data measurement with -0.0155 bias, corresponding to zero differences. For 
this parameter, the lower and upper limits were -1.04 and 1.07, respectively.

A noticeable difference can be seen between the manual and automated data for the 
zero-crossing time, in which the percentage difference was determined as 3.43%. The 
automated data were characterized based on the criteria of zero-crossing time from Equation 
2, in which the brute-force search algorithm employed both time-reversal and time-forward 

Figure 7. Bland-Altman plot for zero to peak rise time

Bland-Altman plot for zero to peak rise time
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concepts. Besides, there is a slight difference in AM and SD between the manual and 
automated data. Based on Table 1, the comparison with the manual data revealed that the 
AM (32.63) and SD (12.65) of the automated data were slightly lower, particularly 3.43% 
and 0.94%, respectively. In addition, Figure 8 shows the Bland-Altman analysis of zero-
crossing time for both manual and automated data, through which the mean difference was 
determined as 0.2238, corresponding to zero differences. Meanwhile, the lower and upper 
limits were observed as -4.718 and 5.166, respectively.

Figure 8. Bland-Altman plot for zero crossing time

For the 10-to-90% rise time, a significant difference between the automated and manual 
data was observed with a calculated percentage difference of 4.43%. The automated data 
were characterized using the brute-force search algorithm based on the criteria defined 
from Equation 3. From Table 1, the AM of automated data (4.31) was found to be slightly 
lower (4.43%) than the manual data (4.51). On the contrary, the SD for automated data 
(1.36) was slightly higher (8.80%) than the manual data. As can be seen from Figure 9, the 
mean difference between the manual and automated data was discovered as 0.1313, which 
corresponded to zero differences. Furthermore, the associated lower and upper limits were 
observed as -0.59 and 0.86, respectively. 

A noticeable difference can be seen for the slow front time, in which the percentage 
difference between manual and automated data was calculated as 4.82%. The automated 
data were characterized using the brute-force search algorithm according to the criteria 
defined from Equations 6 and 7, based on the intersection point of the plotted gradients. 
Based on Table 1, the comparison with the manual data revealed that the AM (4.15) and 
SD (1.88) of the automated data were slightly lower, particularly 4.82% and 9.62%, 
respectively. The automated data were slightly lower than the manual as the maximum 
angle of the slow front gradient might be higher or lower than the assumption value, thus 
resulting in the variance. The manual data for a slow front time was observed based on 

Bland-Altman plot for zero crossing time
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the difference between the two slopes at the rise time signal. The slow front occurs before 
the fast front, in which the turning point between these two signals was estimated from 
the naked eye. Hence, the estimated turning point of the slow front’s slope might differ 
from the automated approach that contributes to the highest percentage difference. Figure 
10 shows that the mean difference between the manual and automated data was observed 
at 0.0833, corresponding to zero differences. Meanwhile, the lower and upper limits were 
observed as -0.93 and 1.09, respectively.

Based on Table 1, a significant difference between the manual and automated data can 
be seen for the slow front relative amplitude to the peak. The percentage difference was 
calculated as 1.84%. The criteria of slow front amplitude relative to peak were defined from 
Equation 8, where the slow front amplitude was divided by the waveform peak amplitude. 
The automated data were characterized using the brute-force search algorithm based on 
these established criteria. Further comparative analysis showed that the AM (28.27) and SD 
(8.35) for the automated data were slightly lower than the manual data, with a difference 

Figure 9. Bland-Altman plot for 10-to-90% rise time

Figure 10. Bland-Altman plot for slow front time

Bland-Altman plot for 10-to-90% rise time

Bland-Altman plot for slow front time
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of 1.84% and 1.30%, respectively. Besides, the Bland-Altman plot analysis in Figure 11 
showed that the mean difference between the manual and automated data was observed as 
0.1168, corresponding to zero differences. Furthermore, the lower and upper limits were 
observed as -2.73 and 2.97, respectively.

A significant difference can be seen between the manual and automated data for the fast 
transition 10-to-90% rise time, in which the percentage difference was calculated as 1.77%. 
The automated data was characterized using the brute-force search algorithm based on the 
criteria defined from Equation 11. The fast transition was taken between the time at peak 
amplitude with the slow front time. Apart from that, the comparative analysis showed that 
the AM of automated data (3.88) was slightly lower (1.77%) than the manual data (AM = 
3.95). On the same note, the SD of automated data (1.68) was also slightly lower (1.75%) 
than the manual data (SD = 1.71). The Bland-Altman plot from Figure 12 illustrates the 
mean difference between the manual and automated data measurement with 0.0679 bias, 
corresponding to zero differences. Furthermore, the lower and upper limits were observed 
as -0.69 and 0.83, respectively.

Figure 11. Bland-Altman plot for slow front amplitude relative to peak

Figure 12. Bland-Altman plot for fast transition 10-90% rise time

Bland-Altman plot for slow front amplitude relative to peak

Bland-Altman plot for fast transition 10-90% rise time
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A noticeable difference can be seen between the manual and automated data for width 
dE/dt pulse at half peak, in which the percentage difference was identified as 1.68%. 
The automated data were characterized based on Equation 13, which was constructed 
by implementing both the time-reversal and time-forward concepts. From Table 1, the 
comparison revealed that the AM of the automated data (3.51) was slightly lower (1.68%) 
than the manual data (AM = 3.57). Similarly, the SD of the automated data (1.17) was also 
slightly lower (4.88%) than the manual data (SD = 1.23). Besides, from Figure 13, the mean 
difference between the manual and automated was discovered as 0.0453, corresponding 
to zero differences. Furthermore, the lower and upper limits for the width dE/dt pulse at 
half peak value were observed as -0.43 and 0.52, respectively.

Overall, the differences between manual and automated data for all parameters are 
due to the algorithm’s decimal places of each point/time calculated by the algorithm 
being much larger. Compared to the manual approach, all the points are observed and 
calculated in smaller decimal places which most of the value has been rounded up to one 
or two decimal places. The different number of decimal places taken could contribute to 
differences/variations in the results from the basic mathematical calculations. In addition, 
a non-uniformity of the value/point taken while characterizing the data manually also 
gives a significant contribution to differences with automated data. The automated data is 
based on the fixed structure that provides a proper/standard guideline and operation in the 
characterization algorithm based on the desired requirement defined from the developed 
mathematical equations. Hence, the difference between the non-uniformity data (manual 
approach) and the fixed structure (automated data) might also contribute to these differences.

Figure 14 illustrates the developed Graphic User Interface (GUI) for an automated 
approach by displaying a full spectrum lightning-generated electric waveform and 
characterizing the negative lightning return strokes through Matlab software. At the top, 

Figure 13. Bland-Altman plot for width dE/dt pulse at half peak value

Bland-Altman plot for width dE/dt pulse at half peak value
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CONCLUSIONS

This study demonstrated an automated negative lightning return strokes characterization 
based on seven main parameters using the brute-force search algorithm and MATLAB 
software. A total of 170 lightning electric field signals were recorded and characterized 
automatically using the algorithm. The algorithm’s working principle operated based on 
the comparative search concept, time-reversal search concept, and time forward concept. 
These concepts provided an effective method for characterizing negative lightning return 
strokes, mainly on the seven parameters in this study. Based on the data comparison 
between this study’s manual and automated data, a small difference between the two data 
measurements was observed. The percentage difference range was less than 5%, which was 
between 1.19% and 4.82%. The AM and SD for the automated data were also consistent 
with the manual data. Furthermore, most of the plotted data were within the upper and lower 
limits of agreement, as evident from the Bland-Altman graphs. Overall, the results of the 
statistical approach that involved analysis on the percentage difference, AM, SD, and Bland-
Altman plots demonstrated the capability of the proposed algorithm in the characterization 
of negative lightning return strokes parameters. In particular, the algorithm development 

Figure 14. GUI of output waveform spectrum and analysed negative return strokes

the full spectrum of the raw data/output waveform fetched from the transient recorder 
system is displayed. While the negative return strokes that were characterized and analyzed 
automatically using the proposed brute-force search algorithm are illustrated in the second 
window. The value for each of the negative return stroke parameters is also presented in 
the GUI.

RETURN STROKE ANALYSIS
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provided a practical and feasible method to analyze and characterize the related parameters 
with a faster processing time and optimize the characterization accuracy. For future work, 
the implementation of artificial intelligence, which involves training, testing, and validating 
the data set of the lightning-generated electric field powered by machine learning or deep 
learning, could improvise the algorithm’s accuracy.
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